Тема 1.3. Этапы моделирования

Оглавление | Назад| Далее | Глоссарий понятий

Прежде чем браться за какую-либо работу, нужно четко представить себе отправной и конечный пункт деятельности, а также примерные ее этапы. То же самое можно сказать и о моделировании. Отправной пункт здесь — прототип. Им может быть существующий или проектируемый объект или процесс. Конечный этап моделирования — принятие решения на основании знаний об объекте.

Цепочка выглядит следующим образом:

Прототип (объект, процесс) Моделирование Принятие решения

Пример 1.3.1

Пример 1.3.2

Моделирование — творческий процесс. Заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить поэтапно. При решении конкретной задачи эта схема может подвергаться некоторым изменениям: какой-то блок будет убран или усовершенствован, какой-то — добавлен. Содержание этапов определяется поставленной задачей и целями моделирования.

Рассмотрим основные этапы моделирования подробнее.

Этап 1. Постановка задачи.

Под задачей понимается некая проблема, которую надо решить. На этапе постановки задачи необходимо:

  1. описать задачу,
  2. определить цели моделирования,
  3. проанализировать объект или процесс.

Описание задачи.
Задача формулируется на обычном языке, и описание должно быть понятным. Главное здесь — определить объект моделирования и понять, что должен представлять собой результат.

Цели моделирования.

  1. Познание окружающего мира.
    Зачем человек создает модели? Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать. Накопленные знания передавались из поколения в поколение устно, позже письменно, наконец с помощью предметных моделей. Так родилась, к примеру, модель земного шара — глобус, — позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и расположении материков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром моделей.
  2. Создание объектов с заданными свойствами (задача типа «Как сделать, чтобы...»).
    Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.
  3. Определение последствий воздействия на объект и принятие правильного решения (задача типа «Что будет, если...»: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)
    Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмешательства в природу.
  4. Эффективность управления объектом (или процессом).
    Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут «и волки сыты, и овцы целы». Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой — нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей — технология приготовления должна соответствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

Анализ объекта.
На этом этапе четко выделяют моделируемый объект, его основные свойства, его элементы и связи между ними. Простой пример подчиненных связей объектов — разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.

Этап 2. Разработка модели.

Информационная модель.
На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель. Модели должны отражать наиболее существенные признаки, свойства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте.

Пример 1.3.3.

Этот пример показывает, что информации не обязательно должно быть много. Важно, чтобы она была «по существу вопроса», т. е. соответствовала цели, для которой используется.

Например, в школе учащиеся знакомятся с информационной моделью кровообращения. Предлагаемой в учебнике анатомии информации достаточно для школьника, но мало для тех, кто проводит операции на сосудах в больницах.
Информационные модели играют очень важную роль в жизни человека.
Знания, получаемые вами в школе, имеют вид информационной модели, цель которой — изучение предметов и явлений.
Уроки истории дают возможность построить модель развития общества, а знание этой модели позволяет строить собственную жизнь, либо повторяя ошибки предков, либо учитывая их.
На уроках географии вам сообщают информацию о географических объектах: горах, реках, странах и др. Это тоже информационные модели. Многое, о чем рассказывается на занятиях по географии, вы никогда не увидите в реальности.
На уроках химии информация о свойствах разных веществ и законах их взаимодействия подкрепляется опытами, которые есть не что иное, как реальные модели химических процессов.
Информационная модель никогда не характеризует объект полностью. Для одного и того же объекта можно построить различные информационные модели.

Пример 1.3.4.

Другой пример различных информационных моделей для одного и того же объекта.( Пример 1.3.5. )

Выбор наиболее существенной информации при создании информационной модели и сложность этой модели обусловлены целью моделирования.

Построение информационной модели является отправным пунктом этапа разработки модели. Все входные параметры объектов, выделенные при анализе, располагают в порядке убывания значимости и проводят упрощение модели в соответствии с целью моделирования.

Знаковая модель.
Прежде чем приступить к процессу моделирования, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

Компьютерная модель
— это модель, реализованная средствами программной среды.
Существует множество программных комплексов, которые позволяют проводить исследование (моделирование) информационных моделей. Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов.
Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний — среда текстового редактора.

Основные функции компьютера при моделировании систем:

Этап 3. Компьютерный эксперимент.

Компьютерное моделирование — основа представления знаний в ЭВМ. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, а прогресс в информационной технологии — с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка.

Разновидность компьютерного моделирования — вычислительный эксперимент, т. е. эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента — компьютера, компьютерной среды, технологии.

Вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее). Грубо говоря, наши знания об окружающем мире линейны, а процессы в окружающем мире нелинейны.

Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать ход событий и т. д.

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод исследования — компьютерный эксперимент. Компьютерный эксперимент включает некоторую последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

Этап 4. Анализ результатов моделирования.

Конечная цель моделирования — принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий — либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Главное, надо всегда помнить: выявленная ошибка — тоже результат.
Как говорит народная мудрость, на ошибках учатся.

 

Оглавление | Назад| Далее | Глоссарий понятий

Hosted by uCoz